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In their review, Sandhu, Xiao and Lawson, (2023) outline a frame-
work for the study of uncertainty, particularly in the context of psy-
chopathology. The authors correctly argue that clinically-derived 
intolerance of uncertainty can be better understood through a compu-
tational lens. One aspect of the proposed framework is the uncertainty 
about the number of latent states in the environment. This is indeed an 
important aspect, however, as pointed out by the authors the relation-
ship between state inference and uncertainty extends beyond the un-
certainty about the number of states. In this commentary I will briefly 
expand on this relationship. Specifically, I will suggest that uncertainty 
largely determines the process of state inference and that the desire to 
reduce uncertainty may lead to increased tendency to identify latent 
structures. I will also demonstrate with simulations the importance of 
taking state inference into account in computational models to disso-
ciate its contributions from uncertainty related processes. 

Identification of regularities in external environments to inform in-
ternal representations is arguably one of the key drivers of flexible 
behavior, as highlighted by recent work on learning and cognitive maps 
(Schuck et al., 2016). Consider a classic reversal learning setting, in 
which a cue switches repeatedly between signaling high versus low 
probability to receive a shock (Fig. 1a). This environment is character-
ized by high uncertainty. But what do participants make of this uncer-
tainty? Many experiments have shown that participants might take the 
uncertainty to imply the existence of two latent states of the environ-
ment, between which one can switch, as opposed to gradually updating 
their expectations. Such separation of acquisition (high shock proba-
bility) and extinction (low shock probability) into separate internal 

states has been highlighted as a potential mechanism behind fear relapse 
(Gershman and Hartley, 2015), and much research and clinical practice 
has focused on achieving context-independent extinction (Craske et al., 
2014). Recently, high trait anxiety has been associated with the ten-
dency to infer multiple latent states during aversive probabilistic 
learning, potentially explaining higher rates of fear relapse in anxious 
populations (Zika et al., 2023). However, the ways in which 
state-dependent learning relates to uncertainty have not been explicitly 
discussed. Here, I pinpoint two ways in which uncertainty and its 
intolerance relate to, and interact with, inference of latent states beyond 
the higher order uncertainty about the number of states. 

As pointed out by the authors, the two broad types of uncertainty are 
irreducible (i.e., first order) and reducible (e.g., second order and higher 
order uncertainty). Here, I argue that both of these types of uncertainty 
can directly drive inference about latent changes in the environment. 
Specifically, deciding whether a surprising outcome represents a shift in 
the underlying context or an oddball event depends on what our current 
estimates of reducible and irreducible uncertainty are. In Zika et al. for 
example, each state is accompanied by an estimate of uncertainty (es-
timate of state-specific first order uncertainty). During learning, the 
agent continuously monitors the magnitude of recency-weighted (un-
signed) prediction errors, and infers a new state when errors have been 
larger than what is expected under the current state (i.e., uncertainty is 
reducible). Both types of uncertainty are necessary to evaluate whether 
the underlying state has changed. Such a nuanced way to assess un-
certainty and inferring states has one core benefit: it improves pre-
dictions, and it leads to less subjective uncertainty (i.e. uncertainty 
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experienced/perceived by the individual, which may be different from 
objective uncertainty and may not distinguish between different un-
certainty types). This in turn raises an intriguing possibility: do indi-
vidual differences in intolerance of uncertainty play a role in separation 
of environments into subjective states? This might explain why in-
dividuals high in trait anxiety have been reported to infer multiple latent 
states. While identification of existing latent structures is arguably an 
adaptive feature, excessive tendency to infer structure where there is 
none, essentially leads to overfitting of the data. This may in turn lead to 
increase in subjective uncertainty, resulting in a sense of feeling over-
whelmed or helpless. As mentioned earlier, separation of aversive en-
vironments to multiple internal states also means that past aversive 
memories are not forgotten and can return in future. 

Importantly, due to the inherent interdependence between the two 
uncertainty types, bias in one mechanism would also lead to biases in 
others, and it may not be clear whether abnormal learning is due to mis- 
estimation of reducible or irreducible uncertainty. 

Additionally, incorporating state inference into models of learning 
under uncertainty may be important for correct identification of 
uncertainty-related mechanisms. Here, I will focus on two aspects: 
analysis of learning rates and estimation of stochasticity. First, a number 
of studies have found altered aversive learning rates in clinical pop-
ulations (e.g., autism, anxiety; Browning et al., 2015; Huang et al., 2017; 
Lawson et al., 2017). Intriguingly, change of learning rates may reflect a 
number of separable cognitive mechanisms such as mis-estimation of a 
specific type of uncertainty. Importantly, it can also reflect increased 
reliance on state inference, even in cases where no trial-by-trial learning 
takes place. To demonstrate this point, I generated artificial data using a 
weighted mixture of predictions of Rescorla-Wagner model (with fixed 
learning rate of 0.1) and a state inference-like mechanism (SI), sys-
tematically varying the contributions of the two (for simplicity, here the 
SI learner knows that there are two states). I then estimated the resulting 
learning rates. Indeed, increasing the proportion of the state inference 
model led to elevated learning rates. Similarly, contributions of a vola-
tile learner (Pearce-Hall, version from Li et al., 2011) resulted in a 

comparable increase in estimated learning rates (Fig. 1b). This is 
particularly important considering that some of the work on volatility 
has employed tasks with structured reversals to induce volatility, 
effectively conflating volatility with state inference (as also pointed out 
by the original authors). Note that the chosen baseline learning rate 
(alpha=0.1) means that elevation of learning rates is observer, however, 
if the baseline learning rate was high a relative decrase would be 
observed (see also Nassar and Troiani, 2021). The main point however 
stands: fast one-state learning and two-state switching lead to the same 
relative change in learning rates. Dissociating the two mechanisms is 
important to understand the subjective experience - while a participant 
with high volatility estimate will find themself in a state of high sub-
jective uncertainty, an individual who has inferred the latent structure 
will have arguably reduced some of the environmental uncertainty, and 
may in turn be experiencing a state of low(er) subjective uncertainty. 

Second, recent work focussing on the role of uncertainty in anxiety 
has suggested that highly anxious individuals tend to mis-estimate sto-
chasticity (Piray and Daw, 2021). In their simulations the authors show 
that stochasticity-lesioned model performs abrupt jumps when contin-
gencies change, similarly to a state-inferring model. I demonstrate this 
general pattern in Fig. 1c. In order to dissociate whether a participant 
mis-estimates stochasticity or relies on state inference, a model incor-
porating both mechanisms can be used. Additionally, in paradigms 
employing single-trial expectancy ratings (e.g. cannonball task), disso-
ciating the two mechanisms can be achieved by analyzing learning 
during oddball events (red circles in Fig. 1c). Specifically, participants 
who misestimate stochasticity should show learning from oddball events 
while participants aware of the current state should show relatively little 
learning (see also Yu et al., 2021 and Zika et al., 2023). 

In summary, I argue that state inference is closely intertwined with 
uncertainty. Specifically, state inference is directly informed by irre-
ducible and reducible uncertainty, and tendency to infer states may be 
driven by intolerance of uncertainty. Additionally, state inference can 
sometimes lead to similar behavioral predictions as uncertainty-based 
mechanisms. Therefore, incorporating it into models of learning under 

Fig. 1. Panels (a) and (c) represent simulated time courses of different theoretical agents. The gray dots represent outcomes received on each trial (e.g., reward or 
shock level). The lines represent trial-by-trial predictions generated by each model given the outcomes. (a) Simulated time-courses of predictions of a volatile one- 
state learner (purple) and a two-state switching model (teal). (c) Simulated time-courses of predictions of an agent which mis-estimates stochasticity (i.e., fully learns 
from all events; black) and a two-state switching model (teal). Red circles highlight oddball events where predictions of the two mechanisms diverge: while both 
mechanisms are characterized by large switches following a reversal, the state-inferring model tends to ignore single oddball events because they are likely rare 
uninformative events. At the same time, the stochastic agent learns from all events equally, including oddballs. (b) Learning rates estimated by a Rescorla-Wagner 
(RW) model fitted to data with increasing contributions of either volatile learner (VL) or state inference learner (SI) models. The predictions on each trial were mixed 
using a weighted sum of RW (alpha = 0.1) and VL/SI. Increasing the weight of VL/SI resulted in increased learning rates in both cases. Y-axis shows the change in 
estimated learning rate over a RW model with alpha = 0.1, i.e., a model with 0 weight on either SI or VL models will just be the baseline RW model. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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uncertainty is warranted. This is particularly important in the context of 
psychopathology where omission of state inference can lead to misin-
terpretation of results relating to subjective uncertainty. 
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